6-2D-LM65-006 Rev.02

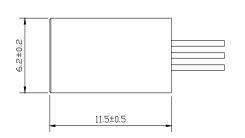
Φ6.2mm 650nm Laser Module

Features

APC (auto power control) IC inside Low current consumption of the APC circuit Surge current protection High quality lens for output beam

Absolute maximum ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	Vcc	3.3	V
Laser Module optical output power	Ро	<3	mW
Operation temperature	Topr	0~40	°C
Storage temperature	Tstg	0~60	°C

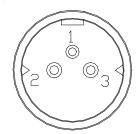

Electrical and optical characteristics (T_c=25 °C)

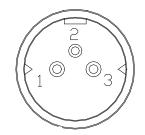
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Wavelength	λ	-	655	-	nm	Po= 3mW	
Operation current	lop	-	-	35	mA	Po= 3mW ; Vcc=3V	
Operation voltage	Vop	2.5	-	3.3	Volt		
Laser Beam spot size at 10m	<10mm						
Divergence angle	1.1 mrad						

^{*} Sufficient heat dissipation is required for CW operation.

Outline dimensions (Units: mm)

Aperture Size: 2.4mm

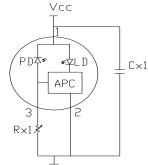



6-2D-LM65-006 Rev.02

Φ6.2mm 650nm Laser Module

PIN Assignment:

A type: Heat sink stand (-) B type: Heat sink stand (+)

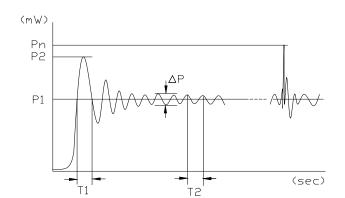


Pin 1: Vcc Pin 2: GND Pin 3: PD

Laser power Adjustment Procedure

- 1. Connect 1 uF capacitor (Cx1) between Pin1 and Pin2.
- 2. Connect 20~50K ohm variable resistor (Rx1) between Pin2 and Pin3.
- 3. Set Vcc to the designed value.
- 4. Adjust Rx1 to obtain the desired output power.
- 5. Laser Safety Precautions
 - (1) Do not increase Vcc value when the laser module is working near the maximum power. That is to protect laser from overdriving condition and make sure power is under 3 mW.
 - (2) Do not operate the device above the maximum rating condition, even momentarily. It may cause unexpected permanent damage to the device

Laser power stability


P1: 2.5mW P2: < 3mW Pn: <3mW ΔP: < 0.5mW T1: < 0.1us f2=(1/T2): 3MHz

NOTE:

P1: Mean power

P2: Max power from turning on power

Pn: Max power from Vcc noise ΔP: Power Amplitude of vibration T1: Time between trigger and convergence

• Precautions

- * Do not operate the device above maximum ratings. Doing so may cause unexpected and permanent damage to the device.
- * Take precautions to avoid electrostatic discharge and/or momentary power spikes. A change in the characteristics of the laser or premature failure may result.
- * Proper heat sinking of the device assures stability and lifetime. Always ensure that maximum operating temperatures are not exceeded.
- * Observing visible or invisible laser beams with the human eye directly, or indirectly, can cause permanent damage. Use a camera to observe the laser.
- * No laser device should be used in any application or situation where life or property is at risk in event of device fail* Specifications are subject to change without notice. Ensure that you have the latest specification by contacting us prior to purchase or use of the product.

ARIMA LASERS CORP.

PHONE: 886-3-4699800 | FAX: 886-3-4699600 E-MAIL: Ldsales@arimalasers.com | www.arimalasers.com

